
PeerSoN: P2P Social Networking —
Early Experiences and Insights

Sonja Buchegger, Doris Schiöberg
Deutsche Telekom Laboratories /

TU Berlin
Berlin, Germany

firstname@net.t-labs.tu-berlin.de

Le-Hung Vu
EPFL

Lausanne, Switzerland
lehung.vu@epfl.ch

Anwitaman Datta
NTU Singapore

Singapore
anwitaman@ntu.edu.sg

ABSTRACT
To address privacy concerns over Online Social Networks
(OSNs), we propose a distributed, peer-to-peer approach cou-
pled with encryption. Extending the distributed approach by
direct data exchange between user devices removes the strict
connectivity requirements of web-based OSNs. In order to
verify the feasibility of this approach, we designed a two-
tiered architecture and protocols that recreate the core fea-
tures of OSNs in a decentralized way. This paper focuses on
the description of the prototype built for the P2P infrastruc-
ture for social networks, as a first step without the encryp-
tion part, and shares early experiences from the prototype
and insights gained since first outlining the challenges and
possibilities of decentralized alternatives to OSNs.

1. INTRODUCTION

Online social networks (OSNs) enable people to keep in touch
with their friends, find people they lost contact with and even
find new friends based on shared affinities such as groups,
hobbies, interests or overlaps in friendship circles. Moreand
more people use OSNs to exchange messages instead of e-
mails and update information on what they are currently do-
ing or other brief expressions of their identity, thereby leav-
ing information about themselves and their friends on the
system of the OSN provider. This information is usually pri-
vate and intended for the eyes of a specific audience only. In
OSNs like Facebook, MySpace, or Orkut, users can adjust
privacy settings to protect their content and limit access by
other users.

There is, however, no protection against access by the
OSN providers themselves and little protection against third-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,requires prior spe-
cific permission and/or a fee. EuroSys’09, March 31, 2009, Nuremberg,
Germany Copyright 2009 ACM ISBN 978-1-60558-463-8 ...$5.00.

party OSN application providers that gather information about
their users’ friends. Privacy concerns in OSNs have been
raised repeatedly in the last few years.1 For example, there
has been an outcry over Facebook’s Beacon program2 that
fed back users’ information from third-party websites such
as Amazon and displayed it on Facebook. There have also
been questions of data ownership when users discovered that
their profile information still existed on the OSN websites
even after they had canceled their account. Even without
such events that many people consider outright breaches of
privacy, there are concerns over the centralized nature of user
data repositories that can be used for data mining and tar-
geted advertising by the service providers.

To provide users with privacy protection in OSN, we pro-
pose using a peer-to-peer (P2P) infrastructure and encryp-
tion for social networks. Previously, we outlined some of
the challenges and preliminary solutions to make OSNs dis-
tributed and privacy-preserving [1]. We will summarize some
high-level ideas from this prior work here when necessary
for context. This paper extends this prior work and formally
describes the prototype built for the P2P infrastructure for
social networks, PeerSoN. We also share early experiences
and insights gained from building the prototype.

In the remainder of the paper, we briefly describe our ap-
proach to privacy-preserving social networks, PeerSoN, in
Section 2 and outline the typical features of OSNs and their
implementation in PeerSoN. Section 3 describes the archi-
tecture and protocols for information exchange in the Peer-
SoN prototype. During the course of the prototype imple-
mentation, we have gained some experience and also en-
countered several more fundamental challenges that are not
directly related to the prototype. Section 4 describes these
insights and challenges. We relate PeerSoN to other ap-
proaches in Section 5 and conclude the paper in Section 6.

2. THE PEERSON SYSTEM
This section presents the PeerSoN system and describes its
1http://www.sophos.com/pressoffice/news/articles/
2007/08/facebook.html
2http://arstechnica.com/tech-policy/news/2007/
11/facebook-reevaluating-beacon-after-privacy-
outcry-possible-ftc-complaint.ars

1

goal, the main design choices, and the set of OSN features it
supports.

2.1 Goals
PeerSoN3 aims at keeping the features of OSNs but over-

coming two limitations: privacy issues and the requirement
of Internet connectivity for all transactions. To address the
privacy problem, we use encryption and access control cou-
pled with a peer-to-peer approach to replace the centralized
authority of classical OSNs. These two measures prevent
privacy violation attempts by users, providers, or advertisers.
Extending the decentralized approach, PeerSoN also enables
direct exchange of data between devices to allow for oppor-
tunistic, delay-tolerant networking. This includes making
use of ubiquitous storage to enable local services.

2.2 Design choices
The main properties of PeerSoN are encryption, decen-

tralization, and direct data exchange. In a nutshell, encryp-
tion provides privacy for the users, and decentralization based
on the use of a P2P infrastructure provides independence
from OSN providers. Decentralization makes it easier to in-
tegrate direct data exchange between users’ devices into the
system. Direct exchange allows users to use the system with-
out constant Internet connectivity, leveraging real-lifesocial
networking and locality.

2.2.1 Encryption

The main means for privacy protection in this context is
to allow for users to encrypt their data and control access by
appropriate key sharing and distribution.

Security considerations include bootstrapping, key distri-
bution, and key revocation. A first, naive approach is to
assume the availability of a public-key infrastructure (PKI)
with the possibility of key revocation and to encrypt data
with the public keys of the intended audience, i.e., the friends
a user wants to grant access to files. For friends to exchange
keys, first, extra-network contacts are used to establish and
verify credentials, second, other friends are recommended
and their credential authenticity vouched for by the former
(trusted friends), and third, unrelated users are verified using
the PKI.

Even in centralized OSNs such as Facebook, imperson-
ation is possible by creating a profile using publicly avail-
able information and pictures. In PeerSoN, this should be
prevented. Besides the steps outlined above, one can also
use a challenge-response protocol to mitigate this, a gen-
eral one to differentiate people from bots and a specific one
to verify the possession of shared secrets/memories. The
extra-network contact mentioned above can also be within
PeerSoN by making use of physical meetings of friends and
direct exchange between their devices running PeerSoN.

We are working on reducing the assumptions on PKI and
developing a more efficient approach, using also symmet-
3http://www.peerson.net

ric keys, that will be integrated into PeerSoN. In the current
prototype as described in this paper, however, the focus is on
making OSNs distributed and not on the encryption part for
privacy.

2.2.2 Decentralized Architecture

To protect privacy, user data is encrypted and only ac-
cessible to those who have the right keys. The user deter-
mines who gets keys to what data. The main rationale be-
hind decentralization is that no single entity can determine or
change the terms of service, switch off the service, or have
easy access to all data (albeit encrypted) to infer relation-
ships or behavior. One could also argue that it is not neces-
sary to have a decentralized approach, as one could store
encrypted data centrally without loss of privacy. This is,
however, not strictly true, since the central service provider
might still be able to infer who is related to whom based on
accesses and correlations, such as to IP addresses. In Peer-
SoN, crawling the peer-to-peer network can be prohibitive
since individual peers can be offline and the network may be
partitioned when used in a delay-tolerant network. Moveover,
it becomes less commercially viable to provide a centralized
system, because there is no commercial benefit from data
mining and targeted advertising.

2.2.3 Direct Exchange

When the social networking service is decentralized and
no longer web-server based, users need not be connected to
the Internet for every single use of the system. They can
exchange information directly with one another when they
meet, thus making use of the real-life part of social networks.
Users can carry data for each other and spread information
through the physical social network or delay uploading data
until someone has online connectivity. Moreover, parts of
the system can be kept local, by limiting the scope of where
information is stored and by making use of local devices,
such as home access routers or ubiquitous computing de-
vices that need not be connected to the Internet.

2.3 Features of Online Social Networks
Since the first goal of PeerSoN is to provide the advan-

tages of OSNs, but without the drawback of loss of privacy,
the desirable features of OSNs need to be defined. The var-
ious features provided by OSNs can broadly be classified
into the categories of social link establishment, digital per-
sonal spaces, and means of communication. We now de-
scribe what we mean by these categories and report on how
they are represented in PeerSoN.

Social Links. OSNs connect people by allowing them to
list other users within the OSN that have a social relation,
such as friends or colleagues. In addition to representing
existing social ties, OSNs can also be used to re-establish
lost social connections, if the people are also on the OSN.
Social links can also be newly established, when users link
to each other after meeting in virtual space, for instance in

2

common-interest groups. These groups form an overlay of
social links, as affiliation networks do in real-life socialnet-
works [10]. The links to other users and the links repre-
senting group memberships make up social graphs and by
letting information flow along these graphs, users have am-
bient knowledge of other users’ presence and current activ-
ities. This way, information is pushed to rather than pulled
by the user.

Digital Personal Space.In OSNs, users have their own
digital personal space where others have access rights to
read, write, or leave messages (text or other media). In this
space, users express their identity typically by posting a pro-
file, pictures, and a status of what they are doing or what
they want to express at the moment. Users can post links or
embed media. Users’ actions can be reported to their friends
in news feeds, contributing to the ambient social knowledge
and complementing the information the users put in deliber-
ately.

Means of Communication. Since OSNs, for users, are
for maintaining social relationships, communicating withoth-
ers is the central feature. There are several possible channels
of communication among users. One can leave public mes-
sages using the digital personal space, again not limited to
text, or send private internal e-mail-like messages. For syn-
chronous communication, most OSNs provide instant mes-
saging. An attractive feature of OSNs is that they are open to
third-party applications. While many of these applications
provide alternative means of communicating or getting in
touch asynchronously, there are also applications that allow
users to engage in joint activities, such as real-time games.

In the PeerSoN [8] prototype, we have implemented some
of the features as a proof-of-concept. We therefore abstracted
the implementation problems posed by the features above to
one representative instance of a feature in lieu of implement-
ing all features, even if they are based on the same principle.
As an example, public messages in the form of so-called wall
entries represent the functionality of asynchronous messag-
ing. It is straightforward to add private messaging, as in an
Inbox, to a full-fledged implementation.

The current PeerSoN implementation replicates the fol-
lowing features of OSNs. In the category of social links,
users (peers) can become friends and thus establish a so-
cial link between each other. Digital personal spaces are
provided in that users can maintain their own profile and a
wall, a space for items posted by themselves or their friends.
Communications between users are directly peer-to-peer when
both are online, and the implementation supports asynchronous
messaging when this is not the case.

3. IMPLEMENTATIONS
This section describes the high-level architecture and proto-
cols of PeerSoN.

3.1 Prototype Architecture
PeerSoN has a two-tiered architecture. Logically, one tier

Figure 1: B sends a message to peerA.

serves as a look-up service. The second tier consists of peers
and contains the user data, such as user profiles. The look-
up service stores the meta-data required to find users and
the data they store, for example, the IP address, information
about files, and notifications for users. A peer that wants to
connect to another peer asks the look-up service directly to
get all necessary information. The peers then connect di-
rectly. After having exchanged a message or file, the peers
disconnect immediately, except when doing instant messag-
ing. Figure 1 shows an abstraction of the whole architecture
by way of a message-sending example.

PeerSoN currently uses a Distributed Hash Table (DHT)
for the look-up service. The nodes of the DHT stay con-
nected if the DHT protocol requires it, but the peers do not.
The rationale for this divided architecture is to enable thin
clients such as mobile phones or hand-helds to use the sys-
tem, despite their resource constraints that prevent them from
being reliable DHT nodes.

The focus here is not on building and deploying yet an-
other DHT. To start with, we decided to use OpenDHT4.
OpenDHT is a centrally managed deployment of the Bam-
boo DHT [7] on PlanetLab5. OpenDHT has been overloaded
and unreliable recently, leading us to eventually resort toalso
using a single server process emulating the OpenDHT inter-
face (put, get, and remove) for testing and evaluation. In the
longer run, PeerSoN users should support such a look-up
service in a self-contained manner. The question then be-
comes which machines would fit the needs of a DHT node
to offer a reliable and scalable service. One idea could be to
enable the usage of existing P2P networks, such as Kad or
Gnutella as the look-up service. The architecture is concep-
tually not bound to a certain system. Any service that pro-
vides a key-value interface, as DHTs, can be used. That is
possible, because the DHT stores only information, but does
not process it. Thus there are smart ‘edge’ nodes instead of
a smart look-up service.

The use of a DHT in itself, however, does not provide
any security or privacy to the users. Ultimately, the security
is derived from the use of encryption when storing objects,
and more privacy is derived from the fact that no centralized
entity stores or gathers all the interactions in the system,or

4www.opendht.org
5http://www.planet-lab.org

3

mines all the data stored in the system.

3.2 Prototype Protocols
This section describes how the architecture is implemented

and what the different protocols look like. There are three
basic protocols; login, file discovery, and notifications for
asynchronous messages. As a DHT usually works with key-
value pairs, we implemented all the protocols based on this.
A key-value pair consists of a key that can be searched, the
get method, and the values, which are the data items asso-
ciated with the key. Any meta information, e.g., which user
stores a file or the IP address of a user, is expressed as a key-
value pair with a certain syntax. The details of this syntax
can be found in [8]. The protocols rely on user IDs, which
are discussed next.

3.2.1 Globally Unique IDs (GUID)

User identities must be unique, and the system should be
resistant to impersonation attacks. The advantage of server-
based systems is that a user can sign on with an ID. The
server can verify it and manage the state of a user. This is
more difficult in a distributed system. As a first approach
for the prototype, we assume that everyone today has an e-
mail address that is unique. There is no further registration
process necessary. To prevent a malicious DHT-node from
collecting e-mail addresses, a hash of each e-mail address is
computed and used as an ID. The hash is one-way, prevent-
ing computation of the e-mail address. Another option for
a unique ID is to use the hash of the public key of a user.
To address impersonation concerns, challenge/response pro-
tocols can be used, but are currently not implemented in the
prototype.

3.2.2 The Log-in Procedure

A log-in to the system is the announcement that a cer-
tain user is now online along with the meta-data necessary
to connect to this user and a list of files that the peer stores.
This announcement is sent to OpenDHT in the format of a
key-value pair. The following example serves to illustrate
the login procedure in more detail.

Assuming a userA wants to join PeerSoN from her PDA.
A uses the get-method of OpenDHT with the user’s own
GUID as key. The results returned by the DHT are all val-
ues stored forA. These are the different values for each of
A’s locations, for example her home PC. The value for each
location contains also the state for the location, such asof-
flineor online. These states need to be changed every timeA
changes her location. To do that, all the key-value pairs are
substituted by those containing the currently correct state.
To log out,A substitutes the key-value pair with one con-
taining the state valueoffline. If a friend ofA wants to com-
municate with her, the friend retrieves all values forA’s key
and learns thatA is currently reachable on her PDA.

This protocol allows users to track the state of their friends.
Similarly to server-based architectures, users can log in from

Figure 2: PeerA gets the fileB@in. (Pseudo code)

different machines, which are called locations. Their friends
can tell them apart by the different log-in values. It is pos-
sible to have more than one value associated with a key in
OpenDHT. In that case, OpenDHT returns all these values
to a get-request.

3.2.3 Getting A File

We now describe how file discovery is handled in Peer-
SoN. For example, a userA logs in and wants to know if
there is something new from her friendB. If a user wants to
receive a file she first needs to know who has the file in the
latest version – key-value pair for files – and then find out
how to establish a connection to that peer – key-value pair
for user information. To learn all news ofB, it is enough
for A to getB’s index file. This type of file contains all file
names related toB’s profile. A sends a request for this key,
the file name, to the DHT. From the returned values,A learns
who has the file and in which version. Receiving an updated
(or the latest) version ofB’s index file allowsA to compare it
with the local older version. This way,A can find out about
updates and new files. If the index file has a newer version,
A retrieves the contact information of the userA wants to get
the file from. This does not need to beB. Figure 2 shows
a detailed example with all exchanged messages. To get all
missing or outdated files listed inB’s index file,A just needs
to repeat this procedure.

All files, including index files are protected with appro-
priate access control mechanisms in the design of PeerSoN.
This is, however, not yet implemented in the current proto-
type.

3.2.4 Asynchronous Messages

PeerSoN allows for asynchronous messages to enable ser-
vices similar to wll messages in Facebook or the inbox, even
when the receiver is offline. In the current prototype imple-
mentation, this is solved by storing such messages within
the DHT until the receiver logs in again. Assuming a userA
wants to send a message to her friendB but learns thatB is
offline. A sends the message together with the sender GUID
as a value to the DHT. WhenB logs in again he can retrieve

4

the messages by using a special key-typeB@no, which is
reserved for notifications. This request for notifications is
always done as the last step of the log-in procedure.

Due to limitations of OpenDHT, these messages currently
contain a maximum of 800 characters plus the header infor-
mation and remain in the system for only a week.

3.2.5 Sending Files Unasked

What if a peer opens a connection to another peer and then
sends a large amount of data to a mobile phone? For getting
a file, a handshake protocol is already implemented. This
kind of protocol can be extended by a parameter on file size.
The receiving peer then can decide if she wants the file to
be sent or she can reject the handshake. Moreover, if the file
turns out to be larger than announced, the connection can
be reset as soon as this fact is noticed. In addition, gray- or
black-listing could help to directly reject connection requests
from untrusted peers.

A similar problem with large files can occur when nodes
log in and get their information and receive a large number
of notifications (even with the size restriction of OpenDHT,
but more so without) or when nodes download other people’s
profiles to their phone and the data is large. Handling size
and the number of files is thus needed for both synchronous
and asynchronous data transfer.

In addition to content that is inopportune to download at
the moment due to resource constraints of a device, con-
tent can be simply unwelcome and be considered spam. The
question of spam is twofold, (a) random peers uploading lots
of data into the system that is then replicated by other nodes
and (b) peers connecting to friends that they either do not
know, or that turn out to be untrustworthy, or virus ridden,
and those friends send unwanted content.

4. EXPERIENCES, INSIGHTS, AND OPEN
PROBLEMS

At this early stage, even without access-control related se-
curity considerations, implementing and deploying PeerSoN
at relatively small scales have provided us with insights and
highlighted challenges that cannot be directly met with the
current understandings of peer-to-peer systems.

4.1 Lessons from Using OpenDHT
The following challenges occur with OpenDHT in partic-

ular and, to a large extent, DHTs in general. They are logical
centralization, a third-party provider nature, storage timing
limitations, security vulnerabilities, performance, andavail-
ability issues. We discuss these in turn in this section.

When a user goes online, her peer client can collect her
personal messages from OpenDHT, as explained in Section
3.2.4. The peer can then delete these messages from OpenDHT
as a means of garbage collection. Since an item is deleted
from OpenDHT by sending a delete instruction for a key-
value pair, anyone can delete such a message. This means

that malicious nodes can delete offline messages before these
messages are read by their legitimate destination. While not
currently implemented in the prototype, such malicious be-
havior is easy to thwart while using OpenDHT. This is be-
cause OpenDHT allows users to specify a secret key that is
necessary in order to carry out a deletion. Thus, the message
sender can generate a random secret and store it along with
the rest of the encrypted message, which can then only be
read or deleted by the legitimate recipient.

Besides OpenDHT being logically a separate and central
entity, which does not augur so well with the spirit of com-
plete decentralization envisioned as an ultimate objective of
PeerSoN, OpenDHT has some practical limitations. In par-
ticular, OpenDHT is a third-party service with its own con-
straints such as a maximum time period of seven days of
storage. Furthermore, OpenDHT is logically centralized and
has in recent times had quite some down time, which could
potentially become a bottleneck and single point of failure.

One case of when this matters is asynchronous messag-
ing. When a user is online, accessing her digital personal
space or sending her messages directly is straightforward.
However if a user is not online, then mechanisms are nec-
essary to guarantee availability any time for either accessing
her digital personal space, or for any kind of communica-
tion with her. In the current, proof-of-concept, PeerSoN im-
plementation, any off-line short message can be stored in
OpenDHT, as described ins Section3.2, encrypted using the
target peer’s public key. It uses OpenDHT as a centrally-
managed third-party service that ensures that participating
nodes in the OpenDHT infrastructure adhere to the behav-
ior necessary to run OpenDHT. This assumption cannot be
sustained realistically. Just to take one example, nodes can
drown OpenDHT with messages [7]. Along with the per-
formance concerns, this makes using OpenDHT an unlikely
choice going forward.

Thus, in the longer run, PeerSoN peers will run a self-
contained DHT, taking into account resource heterogeneity.
But in doing so, PeerSoN will lose the assurance that the
participating peers actually enforce the DHT protocols cor-
rectly. Thus securing the DHT itself against all sorts of mali-
cious and selfish behaviors, which has been a long-standing
and yet not fully addressed research problem, becomes cru-
cial. Since the applications are social in nature, we plan to
utilize social trust — which is not present in most traditional
DHTs — to make the DHT reliable.

4.2 Dealing with Storage in P2P OSNs.
Traditionally the study of P2P storage systems has fo-

cused on guaranteeing availability and long-term durability
of content, considering archival and back-up applications,
where large files are typically accessed infrequently. Such
systems can use coding techniques for storage space effi-
ciency. However, in OSNs, many small objects need to be
stored, which are then accessed frequently and each object is
accessed by many users. The storage layer of PeerSoN must

5

take into account these peculiarities of OSN usage character-
istics, which will imply the usage of replication techniques
rather than coding, which in turn has much higher storage
overheads.

Another issue not explicitly studied in current P2P storage
literature is the total available storage capacity of the sys-
tem. Particularly given that PeerSoN will store small objects
which will be accessed frequently and hence replication in-
stead of encoding is more suitable, the storage overhead for
reliability will be considerably higher.

In traditional file-sharing systems, people store only files
they are personally interested in. Therefore, total storage
capacity contributed to the system is not an issue, but avail-
ability of any specific file is not guaranteed. Users typically
trade bandwidth incurring temporary load, and the system is
sustainable as long as each peer contributes as much upload
volume as they download.

In storage applications, each user needs to not only con-
tribute bandwidth, but also contribute storage space, and given
the need to maintain redundancy, users need to provide much
more storage space than they themselves consume. Such
asymmetry will make it difficult to sustain a P2P storage sys-
tem based purely on altruism.

Thus, for a limited total storage capacity of the system,
even under legitimate usage scenarios, the system can get
saturated. Spam like denial of service attacks storing huge
files can further aggravate the problem to saturating the sys-
tem’s storage capacity. Some of these concerns are addressed
in Section 3.2.

Traditional P2P storage systems have focused on place-
ment of redundant objects at random peers or peers deter-
mined by DHT name-space. In recent backup systems like
Friendstore [9], users use their friends’ storage space to store
data. Back-up systems however focus on durability, and
availability is not so critical. Thus none of these approaches
by themselves can guarantee a 24/7 availability, while a OSN
will require exactly that. Exploiting geographic diversity
along with typically diurnal behavior of users, besides us-
ing friends’ storage space, are alternate strategies whichall
need to be taken into account in providing a reliable storage
system, while reducing the storage overhead.

Finally, even if and when a technically well-engineered
and mature P2P OSN is developed, the asymmetric resource
demands on individual users can be a disincentive to par-
ticipate, and without a critical mass of users in the system,
such a system cannot be sustained. Similar to DHTs, a quick
glance of literature in P2P storage systems will make it look
like mature, and yet, when deploying a P2P OSN, the current
state of the art turns out to be inadequate for the specific re-
quirements, as evident from the above discussions and open
questions.

To summarize, despite many years of research on DHTs
as well as on P2P storage systems, the following issues need
further investigation.

Asymmetry of resource demand versus supply:Storage in-

tensive applications require much more resources to
provide the necessary redundancy and resilience than
what each individual users perceive to consume.

Geographic and temporal diversity: Existing redundancy
placement strategies in P2P storage systems are almost
all heuristics - including placement at random, DHT
determined placements as well as at friends. Exploit-
ing temporal and geographic diversity of nodes sys-
tematically can reduce the level of churn for each ob-
ject, and thus in turn reduce the storage and mainte-
nance overheads.

4.3 Next Steps
We have tested the PeerSoN prototype implementation

and verified its functionality on a small scale. The next step
for evaluation is a larger-scale set of experiments on Plan-
etLab and simulations targeting metrics such as response-
time, scalability, and availability. For the metric of response-
time, one question to answer is the effect that distribution
and encryption have as compared to traditional web-service
OSNs that, although complemented by content distribution
systems, are more centralized. User modeling of time behav-
ior and geographic distribution will inform the experiments
on availability. In turn, availability results can deliverinput
for design decisions such as replication policies.

To determine robust as well as sustainable storage mech-
anisms for PeerSoN, we are currently looking at user and
friends’ geographic diversity, as well as exploiting otherso-
cial characteristics like using friend of friends. While these
considerations will take into account time-of-day effectsof
different time zones, the time properties of content can also
inform design decisions. Some of the interesting directions
include exploiting geographical diversity in the user basefor
finding popular content and developing a data replication
strategy using a ranked-based friendship model, suggesting
those users who are likely to be friends [6].

5. RELATED WORK
ePOST [5] is a P2P-based email system, where users pro-
vide storage to be a part of a distributed mail server. The
messages are stored within the DHT until they are delivered.
PeerSoN, however, is developed to provide additional OSN
services, namely user profile management, and enabling com-
munication among users via reading or writing to their shared
space. The DHT is mainly used for lookups, not storage.

Cutillo et al [2] propose using a P2P substrate to solve pri-
vacy issues in current OSNs. The proposed solution relies on
three component of their architecture: a trusted identification
service, a P2P substrate, and a matryoshka (rings of trust for
storage). In contrast, PeerSoN does not assume any kind of
trust relationship between peers but provides access control
by encryption and key management.

Yeung et al [4] develops a framework to export user’s
FOAF6 profiles and store them on dedicated trusted servers.
6http://www.foaf-project.org/

6

Users query and manage profiles through Web-based pro-
tocols, e.g., WebDAV7 or SPARQL/Update8. Using a set
of dedicated servers for storing user’s data, however, might
have further security and privacy issues.

NEPOMUK9 is an on-going EU project with the goal to
develop a middleware for sharing users’ desktops with friends
for online collaborations and sharing of knowledge by ex-
ploiting Semantic Web technologies. In Social VPNs [3],
users can query different social networks to discover friends
to build a Virtual Private Network (VPN) with them.

Commercial initiatives to develop decentralized infrastruc-
tures for OSNs are available. Tribler10 uses a P2P infrastruc-
ture for video-on-demandapplication among friends. Wuala11

is a partially decentralized encrypted file system, allowing
users to share files freely and securely over the Internet.
Diki12 is a social bookmarking service that allows users to
encrypt and share bookmarks with friends via the XMPP
real-time communication protocol13. The storage of data
however relies mostly on XMPP servers. 2peer14 enables
users to connect to their friends through a private Internet
via a Firefox extension or a downloadable software.

6. CONCLUSIONS

In an attempt to fortify OSNs with privacy for the users,
we presented the PeerSoN system which combines a P2P
infrastructure with encryption and direct exchange between
users’ devices. This paper focuses on the description of how
peer-to-peer networking can provide OSN features. The pro-
totype architecture is a two-tier system, consisting of peers
communicating with each other and a separate look-up ser-
vice. We developed protocols for information exchange be-
tween peers and the lookup service as well as among peers
directly. These protocols span the range of sessions sup-
ported in a typical online social network, such as logging in
and out, finding friends or other peers and up-to-date con-
tent, and adding and removing content. The next step is to
integrate our solutions for security, primarily encryption and
access control, into the architecture, protocols, and the im-
plementation itself. A more thorough analysis of the over-
head and robustness of a security and privacy preserving
mechanism in PeerSoN is an essential issue, and is a work
in progress. The results will be combined with the presented
prototype.

Acknowledgements
We would like to thank the five anonymous reviewers and
our shepherd Meeyoung Cha for their useful inputs and very
7http://www.webdav.org/
8http://jena.hpl.hp.com/ ˜ afs/SPARQL-Update.html
9http://www.nepomuk.org

10http://www.tribler.org
11http://www.wuala.com
12http://www.pace-project.org/
13http://xmpp.org
14http://2peer.com

pertinent questions, some of which remain open issues which
we unfortunately are yet to be in a position to answer, while
the others that we could address have helped to improve the
paper significantly.

7. REFERENCES
[1] Sonja Buchegger and Anwitaman Datta. A case for

P2P infrastructure for social networks - opportunities
and challenges. InWONS 2009, 6th International
Conference on Wireless On-demand Network Systems
and Services, Snowbird, Utah, USA, February 2009.

[2] Leucio Antonio Cutillo, Refik Molva, and Thorsten
Strufe. Privacy preserving social networking through
decentralization. InWONS 2009, 6th International
Conference on Wireless On-demand Network Systems
and Services, Snowbird, Utah, USA, Feb 2009.

[3] Renato J. Figueiredo, Oscar P. Boykin, Pierre
St. Juste, and David Wolinsky. Social VPNs:
Integrating overlay and social networks for seamless
P2P networking. In17th IEEE International Workshop
on Enabling Technologies: Infrastructures for
Collaborative Enterprises, June 2008.

[4] Ching man Au Yeung, Ilaria Liccardi, Kanghao Lu,
Oshani Seneviratne, and Tim Berners-Lee.
Decentralization: The future of online social
networking. InW3C Workshop on the Future of Social
Networking Position Papers, 2009.

[5] Alan Mislove, Ansley Post, Andreas Haeberlen, and
Peter Druschel. Experiences in building and operating
epost, a reliable peer-to-peer application.SIGOPS
Oper. Syst. Rev., 40(4):147–159, 2006.

[6] Liben D. Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social
networks.Proceedings of the National Academy of
Sciences, 102(33):11623–11628, 2005.

[7] Sean Rhea, Brighten Godfrey, Brad Karp, John
Kubiatowicz, Sylvia Ratnasamy, Scott Shenker, Ion
Stoica, and Harlan Yu. OpenDHT: a public DHT
service and its uses. InSIGCOMM ’05, August 2005.

[8] Doris Schiöberg. A peer-to-peer infrastructure for
social networks. Diplom thesis, TU Berlin, Berlin,
Germany, December 17, 2008.

[9] Dinh Nguyen Tran, Frank Chiang, and Jinyang Li.
Friendstore: cooperative online backup using trusted
nodes. InSocialNets ’08: 1st Workshop on Social
Network Systems, Glasgow, Scotland, April 2008.

[10] Stanley Wasserman and Katherine Faust.Social
Network Analysis: Methods and Applications.
Cambridge University Press, 1994.

7

